
Solomonoff Induction

Notation - Haskell Syntax

Lambda calculus - examples
\a b -> a + b

\f a b -> b * (f a)
(note: I use spaces here so we can use meaningful words instead of just symbols)

`\x b -> 2 * x + b` can be represented with alternate syntax without
infix notation: `\x b -> (+ b (* 2 x))`. I won't use that alternate syntax

here, though. All usages of arithmetic operations will obey the
standard order of operations.

Functions can be partially applied:
`(\a b -> a + b) 1` reduces to `\b -> 1 + b`

Type signatures - example:
someFunc :: InputTy1 -> List InputTy2 -> OutputTy

("Ty" is an abbreviation of "Type")

The example could correspond to:
someFunc :: Integer -> List (Integer -> String) -> List String

InputTy1 :: Integer; InputTy2 :: Integer -> String; OutputTy :: List String

Some types are parameterized, like List.

If we want to represent a function
that takes no inputs and generates

output, we can use `Unit`

e.g. myFunc :: Unit -> OutputTy

We can generally use a function like the following to
delay evaluation if we want. (Note: this isn't super

important, but it's a useful detail for later)

g :: InputTy -> (InputTy -> OutputTy) -> (Unit -> OutputTy)
g = \a f -> (\unit -> (f a))

`g` takes some value of `InputTy` and some function `f`, and
outputs a function which takes `Unit` and produces a value of 

`OutputTy`. That function `f` takes a value of `InputTy` and
produces a value of `OutputTy`.

Programs exist,
explanations exist, data exists,

etc.

Functions are programs. We are
just going to think about

functions, not programs in
general.

if a function takes no arguments
then it'll produce a value (or
never halt, but we don't care

about those cases).

if a function takes arguments
then it can be partially applied

so it takes no arguments

Some programs output a data
stream that is a prediction of an

observation

These programs may or
may not be useful.

Meaningful parameters can be hidden in data
within the function. This happens when the

function is partially (or fully) applied

e.g. the function: y = \a b x -> a*x + b

For a=2, we can partially
apply the function `y` to get: \b x -> 2 * x + b

The parameter 'a' was encoded
in the coefficient of x.

Assume that functions with meaningful
outputs must have meaningful parameters.

They could have other parameters too,
but some must be meaningful.

Meaningful means that
they're useful to us.

Example: I can use `time = distance / speed` to
predict how long a journey will take. I want `time`,
so `distance` and `speed` are the parameters and I

use the function `\d s -> d / s`

The parameters `d` and `s` are meaningful because
they correspond to things I know: the distance of

the journey, and the speed I will travel. The output is
meaningful too because it's the prediction I want:

the journey's duration.

Assume (for the moment) that ideas are special functions
which are able to process generally meaningful input data

and produce generally meaningful output data.

That is: we *apply* ideas to *the world*, *a way to measure the
world*, and *particular scenarios*. When we apply ideas like
this they produce *another idea*. Some of those ideas are a

*prediction* or *conclusion*.

For those that produce a prediction, it's something like:

IdeaFunction :: MeasureMethod -> TheWorld -> ScenarioParams -> Prediction

For us to practically use ideas to make predictions, we (1)
assume a lot about the world, e.g. that it'll be the same as
the world is now; but also (2) *choose* particular scenario
params (such as distance and speed). This fully applies

`IdeaFunction`

Ideas that don't produce a prediction are either
meaningless, being used out of scope, or not fully applied.

If an idea isn't fully applied we need more details about
the world or the scenario to get something useful

Predictions and conclusions are ideas that we
can reduce, without more details, to a

meaningful value like "10 km/hr" or "yes, do it"

Are ideas really special functions, though?
No, they're *data*

They can't be functions because functions
can't be compared (though they can be

identical). But we compare ideas all the time

We did say that functions can be partially
applied, and parameters can be encoded in

data in the resulting partially applied function

If ideas are data, there must be some
general applicator, a way to turn an Idea

into an IdeaFunction

ApplyIdea :: Idea -> IdeaFunction

The ApplyIdea function needs to be
compatible with our methods of rationality

We are particularly (and only) interested in these
special functions out of all the functions because

they are generically useful.

Methods of rationality need ways to compare ideas, to
judge them against many potential inputs, to consider the

respective outputs, to judge those inputs and outputs
against our goals/preferences, to relate ideas to other ideas,

and to communicate all those things to other people

Goals are data, and we can create a function
to generally evaluate ideas relative to goals.
We can do this via an evaluation function.

We can also encode our goals
in that evaluation function via

partial application.

An evaluation function would need to
take: the function which generates

predictions, many sets of input
parameters with corresponding

observation data, and our goals.

IdeaJudger :: Goals -> IdeaFunction
-> List (InputParams, Observations)

-> Yes/No

InputParameters ::
(TheWorld, ScenarioParams, MeasureMethod)

[or something like that]

How do we make observations?

Whatever function generates
observations must take (at least) the parameters:

`TheWorld` and `ScenarioParams`

That function must *also* take some idea about
measurement: a way to turn `TheWorld` and

`ScenarioParams` into meaningful output data.

RunMeasurement ::
MeasureMethod -> TheWorld ->
ScenarioParams -> Observation

What is the difference between
IdeaFunction and RunMeasurement?

IdeaFunction takes an
*idea* which contains

explanatory information

Explanatory information are
sets of things like: causal links,

deductions, the meanings of
symbols, methods, etc

Explanatory information relate
things in the real world to other

things; they are about
*relationships*, including the signals

that relevant things produce.

RunMeasurement takes a *particular
kind of idea*. The idea only needs to

contain enough information so I
know how to perform and use the

measurement

To measure time, I don't need to
know anything about speed and
distance to trust my stop-watch

and know how to use it.

So we can use ideas about
measurement to judge ideas

about other things like journey
duration or black holes or

graphics cards

What happens when you get more
than one idea that satisfies the

evaluation function?

Multiple options - we'll
come back to this.

If an idea is suitable for our purposes (i.e. we treat it as *true*), then applying the evaluation function will consistently output
a value equivalent to `1`, `yes` or `true` for any given application we care about.

Consider `t = d / s`, we choose to treat it as *true* because
our evaluation function - for actual and hypothetical

usages - consistently says the prediction satisfies our
goals (that it is good *enough*).

Our goals include margins of error,
like "less than 5% error" or "better

than 95% accurate".

These goals have a implicit details too,
like how error or accuracy is measured,
but in general let's presume that those
details are included where necessary.

Our goals include caveats too, like
"does not consider whether a

traffic collision occurs"

Caveats are included because:

we have different ways of dealing
with uncommon circumstances,
factoring them in is inefficient.

we don't want a function more
complex than it needs to be; `t = d / s`

is easy to approximate and we want to
avoid extra work

These caveats are generally not specific
like this, though, they're more general like

"is easy to estimate in my head"

Or it could be like "if exceptions occur, I
have an easy way to factor them in", which

could give you a modified function like:

`\d s ys -> d / s + (sum ys)`, where
ys is a list of durations: how long

any delays will be

we can even modify our goals for
these cases: "if exceptions occur,
the margin of error is within 10%"

Aside: if we take Occam's Razor as more than a rule of thumb
and apply it here, then it tells us the functions we should
prefer are only those with necessary, meaningful inputs.

because they're simpler than
functions with unnecessary inputs.

e.g. time = distance / speed

It's okay to want something
more powerful

 e.g. time = distance / speed
+ (sum all_breaks)

also the *fewest*
necessary inputs

Recap

judgeIdea :: Goals -> IdeaFunction -> 
List (InputParams, Observations) -> Yes/No

RunMeasurement ::
MeasureMethod -> TheWorld ->
ScenarioParams -> Observation

IdeaFunction :: MeasureMethod -> TheWorld ->
ScenarioParams -> Prediction

InputParameters ::
(MeasureMethod, TheWorld, ScenarioParams)

ApplyIdea :: Idea -> IdeaFunction

What does SI get us? The meaningful programs SI finds are idea
functions applied to parameters.

SI takes all possible programs, some of which
produce a prediction, and a stream of data

(observations).

note: you can combine observations, so a
single observation can be the same as many

more foundational observations

the programs which produce a prediction are
either meaningless (because we don't know what

they mean) or they must correspond to a fully
applied idea function (FAIF).

If they correspond to an FAIF, the FAIF must have been applied
over (MeasureMethod, TheWorld, ScenarioParams), and thus

the predictions they generate must have those parameters
"baked in", too.

therefore the observations also must have those
things baked in (otherwise how could the

prediction match the observation?)

SI produces a probability density function
over the inputs based on how well they

generate matching output

For us to get something useful out of
SI: we must be able to turn the

programs it finds into ideas

Which means we need to find ways
to get the parameters out

What if we measured programs
against themselves to find a way to

encode or decode parameters?

We need to look for a
special program.

What relationship would
further our understanding?

We need to link the data that's hidden within the
function to something objective (it should be

something we can agree on, too).

One thing everyone can agree on is that the programs SI
searches are objective, and there are ways to transform

those programs that are objective.

What things do we need to
complete the loop?

SiProgram :: Unit -> Prediction

Baked in to SiProgram:
IdeaFunction, MeasureMethod,

TheWorld, ScenarioParams

SiData :: Unit -> Observation

Baked in to SiData: TheWorld,
ScenarioParams, MeasureMethod

Can we find some relationship between SiProgram and
SiData where we can fix some implicit parameters and

have SiProgram do something useful?

Well, the key must be in MeasureMethod, right?

We don't necessarily know what to do with TheWorld
or ScenarioParams, but we *can* specify objective

relationships in MeasureMethod.

We can fix relationships involving
MeasureMethod to get meaningful outcomes

What if the MeasureMethod is *in terms of the program
itself*? like we generate the *observation data* for each

program based on that program?

We can test *properties* of programs to
find the ones we're interested in.

What sort of properties
are significant?

What happens if we look for programs
which produce themselves? (a sort of quine)

or programs which does other stuff, like produce a
program which takes the original program and undoes the

application of parameters? (this would return a general
program which takes some parameters)

a hypothesis program needs to produce an
output bitstring, but we don't need to know the

output bitstring in advance

If we could do that we could start
to nail down what "meaningful"

programs look like in SI

The meaningful programs are those where we can use some
un-applicator on to get back parameters or other meaningful data.

Programs for which there's also a way to apply new parameters
which encode arbitrary scenarios (i.e. programs with reach).

Is there a sort-of "base case" we can find?

CAN APPLYING A FUNCTION AND THEN
PRECOMPUTING WHERE POSSIBLE EVER RESULT
IN A LARGER FUNCTION? (Like meaningfully for wrt

the functions we're looking for)

[Todo]

Assume: SI is optimal generally - it's
the best method of predicting *anything*

given you know practically nothing

But it's not the best method to find some
things which generate predictions

Like `time = distance / speed` is going to
pretty reliably give good predictions


